Do we need Biomarkers in Gynecologic Oncology

Gottfried E. Konecny Professor of Medicine and Ob/Gyn University of California Los Angeles

What are Biomarkers

Biomarkers tell you....

... of an association

... of the likelihood of an event

Estrogen Receptor as a Biomarker Single-agent Immunotherapy efficacy

Estrogen Receptor as a Biomarker **Prognostic** Marker in Endometrial Cancer

Estrogen Receptor as a Biomarker *Predictive Marker for Response to Anti-Hormonal*

Therapy

Predictive Markers help individualize Treatments

ADVOCACY INTERNATIONAL GYNECOLOGIC CANCER

How do we measure Biomarkers?

How do we measure Biomarkers?

Biomarkers in Endometrial Cancer

Integrated genomic characterization of endometrial carcinoma

The Cancer Genome Atlas Research Network*

4 Molecular Subtypes

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

Managing MSI-high disease Single-agent Immunotherapy efficacy

Study	Drug	N	Patient Selection	ORR (%)
KEYNOTE-158	Pembrolizumab	49	Advanced / metastatic dMMR	57%
GARNET	Dostarlimab	103	Previously treated Recurrent / advanced dMMR	45%
PHAEDRA	Durvalumab	35	Advanced / metastatic dMMR	43%
NCT02912572	Avelumab	15	Advanced / persistent dMMR	27%

Annual Survivor-Caregiver Summit

Marabelle A, et al. *J Clin Oncol.* 2020;38(1):1-10. 2. Oaknin A, et al. Presented at European Society for Medical Oncology Virtual Congress 2020. 3. Antill YC, et al. *J Clin Oncol.* 2019;37(15_suppl):5501. 4. Konstantinopoulos PA, et al. *J Clin Oncol.* 2019;37(30):2786-2794; Bonneville R, et al. *JCO Precis Oncol.* 2017;1:1-15.

Managing MSS disease: Single Agent IO Efficacy in Biomarker Negative Endometrial Cancer

Study	Drug	Ν	Patient Selection	ORR (%)
KEYNOTE-28	Pembrolizumab	24	Advanced/metastatic PD-L1+	13%
Garnet	Dostarlimab	142	Previously treated Recurrent/advanced pMMR	13.4%
PHAEDRA	Durvalumab	36	Advanced/metastatic pMMR	3%
Konstantinopoulos	Avelumab	16	Advanced/metastatic pMMR	6%

Annual Survivor-Caregiver Summit

Ott PA et al. J Clin Oncol. 2017;35(22):2535-2541. 2. Oaknin A et al. SGO 2020. Abstract LBA 9. 3. Antill Y et al. ASCO 2019. Abstract 5501. 4. Konstantinopoulos PA et al. J Clin Oncol. 2019;37(30):2786-2794.

Managing MSI-high disease Mismatch Repair Deficiency or Microsatelite Instability

MSI-high \rightarrow TMB high \rightarrow Neo-Antigens

Biomarkers for MSI-high disease Mismatch Repair Deficiency or Microsatelite Instability

4 Molecular Subtypes

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

Estrogen Receptor as a Biomarker Letrozole and Palbociclib in ER+ Endometrial

cancer

CNL

CNH

p53 as a Biomarker Slenexor in **p53 wild-type** Endometrial Cancer

CNL

CNH

4 Molecular Subtypes

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

HER2 as a Biomarker in_Endometrial or Ovarian Cancer

HER2 as a Biomarker <u>Trastuzumab</u> + Chemotherapy in <u>HER2 + Endometrial Cancer</u>

Annual Survivor-Caregiver Summit

Santin et al, Journal of Clinical Oncology

Biomarkers in Ovarian Cancer

Homologous Recombination (HR) Deficiency

ADVOCACY INTERNATIONAL GYNECOLOGIC CANCER

Homologous Recombination (HR) Deficiency

BRCA Mutations and HRD as a Biomarkers *PARPi synthetically lethal*

Significant progress for BRCA associated cancers

Annual Survivor-Caregiver Summit

1. Coleman R, et al. *N Engl J Med.* 2019: 381 (25): 2403-2415. 2. Gonzalez Martin A, et al. *N Engl J Med.* 2019: 381(25):2391-2402. 3. Ray-Coquard I, et al. *N Engl J Med.* 2019:381(25):2416-2428.

And for those women with HRD +/BRCAwt tumors - not perfect but good

Annual Survivor-Caregiver Summit

1. Coleman R, et al. *N Engl J Med.* 2019: 381 (25): 2403-2415. 2. Gonzalez Martin A, et al. *N Engl J Med.* 2019: 381(25):2391-2402. 3. Ray-Coquard I, et al. *N Engl J Med.* 2019:381(25):2416-2428.

HRP tumors are the big focus now

Annual Survivor-Caregiver Summit

1. Coleman R, et al. *N Engl J Med.* 2019: 381 (25): 2403-2415. 2. Gonzalez Martin A, et al. *N Engl J Med.* 2019: 381(25):2391-2402. 3. Ray-Coquard I, et al. *N Engl J Med.* 2019:381(25):2416-2428.

Cyclin E Amplification as a Biomarker

New Targets: WEE1, ATR, PKMYTH

Gene Expression Profiles as a Biomarkers

Gene Signatures and Bevacizumab Response

Perren TJ, et al. N Engl J Med. 2011 Dec 29;365(26):2484-96

PFS

Annual Survivor-Caregiver Summit

ADVOCACY

Gene Signatures and Bevacizumab Response

Differentiated-like Immune-like Mes.-like Proliferative-like

Group	Median Δ PFS in
	Months
All	6.5, p=0.004
Immunoreactive	<mark>3.8,</mark> р=0.080
Differentiated	<mark>3.7,</mark> р=0.610
Proliferative	10.1, p=0.015
Mesenchymal	<mark>8.2,</mark> p=0.405

Annual Survivor-Caregiver Summit

Winterhoff B, Kommoss S, Konecny GE. J Clin Oncol 32:5s, 2014 (suppl; abstr 5509)

Cell Surface Markers as Biomarkers

Tumor Specific Biomarker

Identify Proteins on the Cell Surface which can be targeted with Monoclonal Anitbodies

Antibody Drug Conjugates

Antibody

Targets cancer cells

FOLR1 as a Biomarker in Ovarian Cancer Based on their overall efficacy and adverse event profile \rightarrow paradigm shift.

Mirvetuximab Soravtansine

Novel Biomarker and ADC Target CLAUDIN 6 Overall survival - Ovarian Cancer

Annual Survivor-Caregiver Summit

XIGC

ADVOCACY NETWORK

Novel Biomarker and ADC Target CLAUDIN 6

Expression of Claudin 6 in Normal Tissues (GTEX)

Expression of HER2 in Normal Tissues (GTEX)

Claudin 6 a New Biomarker

• TORL-1-23 is an ADC with a fully humanized IgG1 (TORL-1-23-MAB) linked to MMAE through a cathepsin hydrolysable dipeptide VC linker (vc-MMAE).

The higher the CLDN6 positivity, the lower the likelihood that patients are FOLR1 positive

CLDN 6+ high (upper half of CLDN 6 mid/high) population appears to be distinct

ADC Landscape 2023

Immunotherapy Biomarkers

PD-L1 is a Weak Biomarker for Immunotherapy

Redundancy of Immune-Checkpoints

Biomarker Development with

Single Cell Sequencing and Multplexed Immunohistochemistry

Cost per Genome

Single Cell RNAseq

Heterogeneous tissue

Dissociated cells

Single cells ready for scRNA-seq

Single Cell RNAseq for Biomarker Studies Zoom in to the Single Cell Level

Muliplexed Immunohistochemistry High Spacial Resolution of Biomarkers

Biomarker Testing

FOUNDATIONONE COX"

Lung non-small cell lung carcinoma (NOS)

11/22/1961

Male

Physician

Dr. Patel

Institution

TEMPUS | XT 648 gene panel

Tumor specimen:

Lung, right upper lobe

Collected 3/3/2022

Received 3/16/2022

Normal specimen:

Received 3/11/2022

Blood Collected 3/9/2022

Tumor Percentage: 40%

Chicago Cancer Center

Interpretive content on this page and subsequent pages is provided as a professional service, and is not reviewed or approved by the FDA.	Sensitivity for the detection of copy number alterations is reduced due to sample quality.		
PATIENT	Biomarker Findings		
DISEASE Lung non-small cell lung carcinoma (NOS)	Tumor Mutation Burden - TMB-High (20 Muts/Mb) Microsatellite Status - MS-Stable		
SEX MEDICAL RECORD #	Genomic Findings		
PHYSICIAN	FOR a compare cas of the genes langues, press right to the Appendix.		
ORDERING PHYSICIAN MEDICAL FACILITY ADDITIONAL RECIPIENT MEDICAL FACILITY ID PATHOLOGIST	CDRN2A/B loss MTAP loss exons 2-8 TPS3 H168L		
SPECIMEN	7 Disease relevant genes with no reportable alterations: EGFR, ALK, BRAF, MET, FRR82_RFT_RDS1		
SPECIMEN SITE SPECIMEN ID SPECIMEN TYPE DATE OF COLLECTION	Therapies with Clinical Benefit in patient's tumor type 20 Clinical Trials Therapies with Clinical Benefit in other tumor type		

	THERAPIES WITH CLINICAL BENEFIT ON PATIENT'S TUMOR TYPE	THERAPIES WITH CLINICAL BENEFIT (IN OTHER TUMOR TYPE)
Tumor Mutation Burden - TMB-High (20	Atezolizumab	Avelumab
Muts/Mb)	Nivolumab	Durvalumab
10 Trials see p. 10	Pembrolizumab	
Microsatellite status - MS-Stable	No therapies or clinical trials. see Bi	omarker Findings section
GENOMIC FINDINGS	THERAPIES WITH CLINICAL BENEFIT (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL BENEFIT (IN OTHER TUMOR TYPE)
KRAS - G12D	none	none
10 Trials see p. 14 Genome (indings and biomarkers with no reportable the	RAPEUTIC OR CLINICAL TRIAL OPTIONS	
10 Trials seep. 14 GENOME (FINISHING AND BOMMEREES WITH NO REPORTABLE THE For more information regarding biological and clinical signif implications, see the Genomic Alterations section. CDWDAVB loss	RAPEUTIC OR CLINICAL TRUE, OPTIONS Icance, including prognostic, diagnostic, germlin p. 4 7P53 H1681.	ne, and potential chemosensitivity
10 Trials seep. 3 citotic financia And Bowksens with the Report ALE into For more information regarding biological and clinical signifi- implications, see the Genome Alterations section. CDWDA/B loss. MAP loss.	RAPLUTIC OR CLINECAL TRAL OPTIONS Teance, including prognostic, diagnostic, germlin p. 4 7P53 H168L p. 4	ne, and potential chemosensitivity

	The content provided as a professional service by Foundation Malicine, Inc., has not been series and or approved by the FDA.	
- 3	lectronically signed by Julia (Len, M.D., Ph.D. Jeffrey Ross, M.D., Hedical Director 17 January 2016	Sample

ISSIONAL SERVICES - PAGE 1 OF 19

TEMPUS

Lung Sample	Diagnosis	Accession No.	
Patient 22024	Adenocarcinoma	Lung 22024	
Date of Birth	GENOMIC VARIANTS		

Somatic - Biologically Relevant	
(ARID2 p.W266* Stop gain - LOF	26.7%
(RBM10 p.E808* Stop gain - LOF	25.5% 💳
€ STK11 p.R331fs Frameshift - LOF	15.7% 🖛
NFE2L2 p.G81V Missense variant - GOF	12.6% -
€ FAT1 c.13139-1G>T Splice region variant - LOF	10.7% =
(BCL11B) p.T502fs Frameshift - LOF	8.0% -

Pertinent Negatives

No pathogenic single nucleotide variants, indels, or copy number changes found in:

 / yri	ad	ger	ıet	cics
myRisk Genetic Res	ult	ř	ny	Risk"
RECEIVING HEALTHCARE PROVIDER	SPECIMEN Specimen Type:	Blood	PATIENT Name:	Pt Last Name,

	PATIENT	
Blood	Name:	Pt Last Name,
Aug 08, 2017		Pt First Name
Aug 08, 2017	Date of Birth:	Aug 08, 1980
Aug 30, 2017	Patient ID:	Patient id
	Gender:	Female
	Accession #:	07778921-BLD
	Requisition #:	7778921
	Blood Aug 08, 2017 Aug 08, 2017 Aug 30, 2017	PATIENT Blood Name: Aug 08, 2017 Date of Birth: Aug 30, 2017 Date of Birth: Gender: Accession #: Requirements #:

m/ision*

GENETIC RESULT: NEGATIVE - NO CLINICALLY SIGNIFICANT MUTATION IDENTIFIED	1
Note: "CLINICALLY SIGNIFICANT," as defined in this report, is a genetic change that is associated with the potential to alter medical intervention.	C

BREAST CANCER RISKSCORE™: REMAINING LIFETIME RISK 23.7% This level of risk is at or above 20% threshold for consideration of modified medical mana e riskScore[™] Interpretation Section for more information.

Draw Dat

Accessio

Report I

CLINICAL HISTORY ANALYSIS: NO MODIFIED MANAGEMENT GUIDELINES IDENTIFIED BASED ON THE CLINICAL HISTORY PROVIDED Other clinical factors may influence individualized management. This analysis may be incomplete if details about cancer diagnoses, ages, family relationships or other factors were omitted or ambiguous

ADDITIONAL FINDINGS: NO VARIANT(S) OF UNCERTAIN SIGNIFICANCE (VUS) IDENTIFIED

Details About Nen-Clinically Significant Variants: All individuals carry DNA changes (i.e., varianta), and most variants do not increase an individual's risk of cancer or other diseases. When identified, variants of uncertain significance (VUS) are reported. Levely beingry variants (Free other disease) and the protocol and available (all includes that these variants most levely do not cause increased cancer risk. Present evidence does not suggest that non-chinolay significant variant findings be used to modify patient medical management beyond what is indicated by the personal and family heatry and any other chinaliay significant findings. ce (VUS) are reported. Likely benign variants (Favo

Variant Gasaribation: Myriant myriann¹⁰⁴ Variant Gasaribation Program parforms ongolog munianions of variant daasilications, In cardina casan, haahtaare myriann gala bocatariaf for mon crinical moreador on ta variant galaasilications. Wom new endersca aboda a varianti is identified and determined to result in ciricial significance and management change, that information will automatical made available to the haahtaare procedure through an amonded report.

DDITIONAL INFO

Other genes not analyzed with this test may also be associated with cancer.

Test Medical Center

Testville, TX 55555

123 Main St

GENES ANALYZED	Indication for Testing: It is our understanding that this individual was identified for
Unless otherwise noted sequencing and large nearrangement analyses were performed on the following genes: APC, ATM, BARDT, BMPRIA, BRCA1, BRCA2, BRIPT, CDH, CDK4, CDNKA2, CHEX2, EPCAM (Sarge nearrangement only), MLH1, MS16, MS36, RADS10, SMADA STR11, TPSS Secuencing was RADS10, SMADA STR11, TPSS Secuencing was	Iteration is a sensitive or annumy inservity suggestive or a mercialize productionation or control. Associated Thood Risks and Clinical Management: Please see the "myficial Management for an associated with the report for a summer of cancer risk and professional society model or menogeneric guidelines that may be useful in developing applicable. Testing of our to real section and insported percentilimative theory if applicable. Testing that management and section and the interpretation of this particular testing.
performed for select regions of POLE and POLD1, and large rearrangement analysis was performed for select regions of <i>GREM1</i> (see technical specifications).	Analysis Description: The Technical Specifications summary (https://www.mynaptor. com/documents-and-forms/hochnical-specifications/) describes the analysis, method, performance, nomerclature, and interpretive criteria of this test. Current testing technologies are unable to definitively determine whether a variant is germline or somal orderin, which may simplicating impact the estimates and method manament.

Analysis Description: The Technical Specifications summary (https://www.myriadpro com/documents-and-forms/technical-specifications/) describes the analysis, method, performance, nomenclature, and interpretive criteria of this test. Current testing technologies are unable to definitively determine whether a variant is germline or somatic technologies are under to unit average document without a valuation is generated on in origin, which may significantly impact risk estimates and medical management; therefore, these results should be correlated with this patient's personal and family history. The interpretation of this test may also be impacted if the patient has a hematologic malignancy or an allogeneic bone marrow transplant.

Final Report

Specimen Information Primary Tumor Site: Lower lobe, lung Specimen Site: Mediastinal lymph node Specimen ID: Specimen Collected: Diagnosis: Carcinoma, metastatic, NOS Test Report Date:

Ordered By

Results with Therapy Associations

Patient

Date of Birth:

Sex: Female

Case Number: TN23-

Name:

	METHOD	ANALYTE	RESULT	THERAPY		BIOMARK LEVEL*
PD-L1 (22c3)	IHC	Protein	Positive, TPS: 80%	BENEFIT	cemiplimab, pembrolizumab	Level 1
PD-L1 (28-8)	IHC	Protein	Positive 1+, 60%	BENEFIT	nivolumab/ipilimumab combination	Level 1
PD-L1 (SP263)	IHC	Protein	Positive, TC: 1+, 60%	BENEFIT	atezolizumab (adjuvant)	Level 1
KRAS	Seq	DNA-Tumor	Pathogenic Variant Exon 2 p.G12C	BENEFIT	adagrasib, sotorasib	Level 2
				LACK OF	erlötinib, gefitinib	Level 2
гмв	Seq	DNA-Tumor	High, 14 mut/Mb	BENEFIT	pembrolizumab	Level 2
ALK	IHC	Protein	Negative 0	£×	alectinib, ceritinib, crizotinib, lorlatinib	Level 1
				LACK OF	brigatinib	Level 2
	Seq	RNA-Tumor	Fusion Not Detected	benefiti	alectinib, brigatinib, ceritinib, crizotinib, Iorlatinib	Level 2
BRAF	Seq	DNA-Tumor	Mutation Not Detected	LACK OF BENEFIT	dabrafenib and trametinib combination therapy, vemurafenib	Level 2
EGFR	Seq	DNA-Tumor	Mutation Not Detected	LACK OF BENEFIT	erlotinib, gefitinib	Level 2
RET	Seq	RNA-Tumor	Fusion Not Detected	LACK OF BENEFIT	pralsetinib, selpercatinib	Level 2
1051	Seq	RNA-Tumor	Fusion Not Detected	LACK OF BENEFIT	ceritinib, crizotinib, entrectinib, lorlatinib	Level 2
MET	CNA-Seg	DNA-Tumor	Amplification Not Detected	LACK OF	crizotinib	Level 3
	Seq	DNA-Tumor	Mutation Not Detected			

Biomarker reporting classification: Level 1 – Companion diagnostic (CDx); Level 2 – Strong evidence of clinical significance or is endorsed by standard or Level 3 – Potential clinical significance. Bolded benefit therapies, if present, highlight the most clinically significant findings.

Germline Testing

Biomarker Testing in circulating cell-free DNA

(cfDNA)

Biomarker Testing will help us Understand Treatment Response and Failure

We need Biomarkers in Gynecologic Oncology

• ER

- BRCA1/2
- HRD
- MSI
- TMB
- FOLR1
- CLDN6

- HER2
- PDL1
- CCNE1
- P53
- KRAS
- NTRK
- B7H4